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A general discussion is given of the formulation of self-consistent equations for two-body strong-interaction 
S matrix elements, on the assumption that all poles are of the Regge type and that asymptotic behavior 
is controlled by these poles. A tentative set of specific equations based on the strip approximation is pre
sented and illustrated by a discussion of the tnr problem. In these equations Regge trajectories and residues 
for one channel are determined by the top-level Regge poles of the crossed channels. One parameter, the 
width of the strip, appears in the equations but it is argued that this parameter may be fixed by the principle 
of maximum strength. 

I. INTRODUCTION 

THERE have been many attempts to formulate 
"bootstrap" equations within the framework of 

the analytically continued strong-interaction S matrix, 
in order to generate certain of the observed particles 
from the assumed existence of others.1-5 Few of these 
attempts, however, have employed the assumption of 
Regge asymptotic behavior and none has attempted to 
exploit the full consequences of such behavior. The 
purpose of this paper is twofold: (a) to discuss the 
general impact of the Regge-pole assumption on dy
namical equations for two-body S matrix elements; 
(b) to illustrate some of the essential points with a crude 
treatment (strip approximation) of the 7T7T problem, 
where the goal is to produce the top-level Regge tra
jectories with B~S=Q, G= + l, 1=0, 1, 2, in terms of 
the assumed existence of the pion. 

By the Regge-pole assumption we mean the following: 
All poles of the strong-interaction S matrix can be con
tinued in angular momentum, all retreating to the left 
half of the J" complex plane (Re/<0) for sufficiently 
large (negative) energies.6 It has been emphasized 
previously that such an assumption corresponds to all 
baryons and mesons being composite, with no internal 
point structure; more precisely, there are no arbitrary-
subtraction terms in the Mandelstam representation. 
According to the Sommerfeld-Watson transform con
necting A(s,J) to A{s,t)? the asymptotic behavior in 
the variable t is <^m a x ( j ) , where /max(s) is the position 
of the rightmost singularity in the / plane.8 If for some 
range of s, Re/ raax(s)<0, the amplitude here vanishes 
sufficiently rapidly as / —»oo so that no arbitrary sub-
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tractions in t are allowed; then by analytic continuation 
in 5, as discussed by Froissart, subtraction terms every
where else are determined.9 Chew, Frautschi, and 
Mandelstam have shown explicitly how to make this 
analytic continuation when the controlling singularity 
is a pole,10 and, according to the equations to be derived 
here, the only singularities extending into the right-half 
/ plane are, in fact, simple poles. 

The asymptotic behavior, then, of the amplitude 
A (s,t,u) describing the three processes 
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will be taken as that of Fig. 1. Here a1 (s) is the right
most Regge trajectory with the quantum numbers of 
channel I and an(/) , alll(u) are the rightmost trajec
tories for channels II and III. If for certain quantum 
numbers more than one trajectory extends into the 
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FIG. 2. A typical high-level Regge trajectory corresponding 
to strongly attractive forces. 

right-half / plane one simply takes the appropriate 
sum of powers, weighted with the Regge-pole residues. 
(When all trajectories for a particular set of quantum 
numbers happen to remain in the left-half plane, the 
amplitude vanishes asymptotically in the corresponding 
direction in s, t, u space.) The choice of the plus or 
minus sign depends on the / signature of the trajectory, 
as has been explained by several authors.11 

What is the general nature of the trajectories that 
succeed in reaching (or closely approaching) the right-
half / plane? It has been shown by Barut and Zwanziger 
and by Taylor that each trajectory a (s) is a real analytic 
function and that, if there is no intersection with another 
trajectory, a (s) has only the right-hand cut extending 
from the physical threshold So to infinity.12 If we assume 
further that a (s) is everywhere bounded (see reference 
15) we may write the dispersion relation 

1 r00 Ima(/) 
a ( 5 )=a (oo)=- / dsf , (1.1) 

suggested by Singh.13 It has been proved by Barut and 
Zwanziger12 that 

Ima oc (5-5o)a(*°)+1/2, <*(*>)>-|, 
8—*80 

and it is plausible for trajectories that reach the right-
half / plane that 

lma>0 

throughout the s physical region. The latter property 
has so far been proved only for potential scattering but 
seems likely to be general since it arises from the 
physical requirement that resonances decay rather than 
grow with time.14 Combining all these features, which 
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Zachariasen, Phys. Rev. 126, 2204 (1962); and E. Squires, Nuovo 
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seem consistent with the equations to be derived, we 
conclude that the general form of an interesting tra
jectory should be as shown in Fig. 2.15 

This figure gives a precise meaning to the strip con
cept introduced by Chew and Frautschi.4 In the finite 
interval for which Rea(.?)>0 with Ima< 1 the trajectory 
dominates the amplitude. For s>0 there will be bound 
state or resonance poles when Rea intersects physical 
integers (with d Rea/ds>0), and for s<0 we are in 
the physical region of the crossed channels where the 
high t (or u) behavior is controlled by the trajectory. 
For large values of s, either positive or negative, the 
trajectory recedes into the left-half / plane where its 
effect becomes submerged among the other / singulari
ties. Isolated trajectories are dominant only within 
strips in the Mandelstam diagram and the "strip ap
proximation" may be restated as the representation of 
the full amplitude by those top-ranking Regge poles 
that reach (or closely approach) the right-half J plane. 

The width of a strip can be estimated in terms of 
a (s) at 5=0 because in (1.1) the principal value integral 
will vanish near the maximum in Ima, this maximum 
occurring near 

Ima(/) r00 Ima (/J / r™ lma(, 

J SQ O ' J «Q O 

a(0) — a(oo) 

«'(0) 
(1.2) 

The Froissart limit tells us that a (0) ^ l9 and Gribov 
has shown that a(oo)> — l.16 Thus the width of the 
strip is < {da/ds)~l at 5=0, i.e., of the order 1 GeV2 in 
typical cases.17 All stable and metastable particles 
correspondingly are expected to have masses < 1 GeV 
and the forward and backward peaks in the crossed 
channels are confined to momentum transfers of this 
same order of magnitude. The absence of large mass 
(energy) ratios may be traced to the lack of arbitrary 
parameters, the most characteristic feature of our strong 
interaction theory. 

Our problem, of course, is to calculate the trajectories 
(and residues) of the top-ranking Regge poles across 
the strips. Could this be done we would have explained 
almost everything known about strong interactions. But 
what must be the input of the calculation? This is a 

16 Note that for S<SQ all derivatives are positive, as emphasized 
by Singh in reference 13. It is seen in what follows that we actually 
only depend on the behavior of Fig. 2 for negative s. If, in fact, 
Rea (s) and Ima (s) both increase as s —* + oo, our approach should 
still be valid. The right-hand boundary of the strip is then deter
mined by the point where Ima> 1 and resonances become so broad 
as to be unrecognizable. 

16 V. N. Gribov, in Proceedings of the Eleventh High-Energy 
Conference, Geneva, July, 1962 (CERN, Geneva, 1962). 

17 A natural energy unit for strong interaction physics is the 
inverse slope of the Pomeranchuk trajectory at zero energy. This 
slope happens to be close to 1 GeV-4 and, as discussed in reference 
6, other high ranking trajectory slopes seem of the same order of 
magnitude. 
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major puzzle since, as noted above, no arbitrary sub
traction terms are permitted. More generally one may 
say that the problem is to calculate the 5 matrix on the 
basis of unitarity and analyticity without an a priori 
knowledge of its dimensionality; to know the dimensions 
would be already to know which trajectories reach the 
right-half / plane to produce particles. No program 
has yet been put forward to generate in a systematic 
way the full dimensionality of the S matrix. (Pre
sumably such a program would have to explain, among 
other things, the strong interaction conservation laws.) 
However, many less ambitious calculations are being 
attempted, where the existence of certain particles and 
conservation laws are assumed and one attempts to 
predict other particles (i.e., trajectories) with quantum 
numbers arising from combinations. A typical problem 
of this nature is to start with a knowledge of the exist
ence of the pion and to attempt the calculation of Regge 
trajectories having the quantum numbers of two-pion 
systems. 

The confusing element here is the redundancy of the 
input. When one knows that the isotopic spin of the pion 
is 1, with B = S—0 and G= — 1, that its angular mo
mentum is zero and its parity odd and also that no 
other particles of such small mass exist, one has inserted 
an enormous amount of information, most, if not all, of 
which should be generated in the exact global solution 
by our general S-matrix principles. At the same time we 
are forced for practical reasons to neglect or mistreat 
many parts of the S matrix. It is a dubious proposition, 
therefore, to strive for a mathematically consistent set 
of equations until the strong interaction problem is 
attacked on a global scale. The most we can hope for at 
present is to find approximately self-consistent solutions, 
appropriate to a localized portion of the S matrix. 
Mathematicians throw up their hands at such an ill-
defined task, but it seems possible, nevertheless, to 
achieve rough results with physical content. The follow
ing section deals with general notions that may be useful 
in this connection. 

II. QUALITATIVE CONSIDERATIONS 

Almost all calculations undertaken to date have been 
based on two-body ^-matrix elements. Is it reasonable 
to hope for real progress within such a restricted frame
work? We believe the answer to be affirmative, although 
the ultimate extent of progress to be expected is unclear. 
Our optimism is based on the absence of arbitrary di-
mensionless constants in the strong interaction scheme. 
The natural unit of mass, as discussed above, is ^ 1 GeV 
and without small or large dimensionless parameters all 
stable and metastable particle masses ought to be of 
this order of magnitude. The consequence should be 
that normally a resonance decays principally into two 
particles; few resonances are sufficiently massive to 
prefer decay into three or more particles. This argument 
has substantial experimental support if, in classifying 

decay products, we include metastable particles, and 
extension of the definition of the S matrix to unstable 
particles is now being vigorously studied.18 When such 
is accomplished it seems reasonable to hope that an 
understanding of the two-body problem suffices for 
many important purposes.19 

An objection may be raised that at high energies pro
duction multiplicities are known to be large. That is 
true, but it appears that the bulk of high-energy phe
nomena is to be understood through a prolongation of 
Regge trajectories to the region of small negative s, in 
the sense of Fig. 2. Thus, an understanding of low-
energy particles and resonances implies an understand
ing also of high-energy phenomena, because of the 
trajectory for small negative s can be calculated by 
analytic continuation if it is known for positive s across 
the strip. (See Sec. V.) A pessimist could invert this 
reasoning, of course, and argue that we should not 
expect to calculate the properties of particles and 
resonances without first acquiring a grasp of the many-
body problem. There seems no way to resolve such 
questions except by actually trying calculations. As 
noted above, a clear mathematical characterization of 
the problem does not yet appear possible. We proceed 
then, confining our attention to S-matrix elements of 
the type a+b-+c+d. 

Our goal is to approximate with reasonable accuracy 
the amplitude A (s,t>u) in the strip regions by superpos
ing those Regge poles (believed small in number) that 
have the relevant quantum numbers and that extend 
into or closely approach the right-half / plane. Outside 
the strips the situation is presumed to be too compli
cated to consider at present. How are we to calculate 
the top-ranking Regge trajectories? The simplest 
method seems to be the N/D technique, appropriately 
modified to include the inelastic region and Regge 
asymptotic behavior. One derives linear integral equa
tions for N(s,J) and D(s,J) with kernels analytic in / , 
the ^-channel Regge-pole trajectories then being given 
by D(s,a(s))=0. The t- and ^-channel trajectories are 
similarly obtained. The basic deficiency of previous 
N/D calculations was the incorrect treatment of asymp
totic behavior both on the right and left. It seems es
sential, as discussed in the next section, to correlate 
these two regions in the sense of Fig. 1 if one is to avoid 
confusion about the number of arbitrary parameters. 

The calculation of the kernel in the N/D integral 
equation is based on crossing, that is, analytic continua-

18 J. Ball, W. Frazer, and M. Nauenberg, Phys. Rev. 128, 478 
(1962); H. Stapp, Lawrence Radiation Laboratory Report, 1962 
(unpublished); D. Zwanziger, University of California Physics 
Department Report, 1962 (unpublished). 

19 It should be realized that the currently employed continuation 
in angular momentum is essentially a two-body continuation. If it 
can be defined for multiparticle systems, as the optimists believe, 
it will be by dividing each system into two groups of particles, each 
group having definite physical angular momentum, and continuing 
in the relative angular momentum between the groups. There may 
be alternative methods of continuation possible but the one cur
rently under discussion is based on such a two-body decomposition, 
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tion to the j-channel physical region from the t and u 
channels and vice versa. Previously this continuation 
was plagued by divergent polynomial expansions, but 
such troubles appear to be removed by the assumption 
of Regge asymptotics. 

Considerable effort has been expended in studying 
the iterative procedure of Mandelstam as an alternative 
to the N/D technique.4,10,20 As far as the author is con
cerned the motivation was that he did not understand 
previously how, otherwise, to formulate the strip ap
proximation. (Also, the problem of threshold behavior 
has sometimes been awkward in N/D.) The formulation 
proposed here in terms of Regge poles seems reasonably 
well suited to N/D, although it could no doubt be imple
mented through the iteration procedure. Which of these 
two techniques turns out the more effective remains 
to be seen. Perhaps a completely different approach is 
destined to make both obsolete, but this paper considers 
the problem from the N/D point of view. 

In summary, then, the program is to assume the 
asymptotic behavior of Fig. 1, and by the N/D method 
to generate the Regge trajectories for each channel from 
the top-level trajectories for the two crossed channels. 
There will be no subtraction constants or CDD poles 
in the N/D equations and in principle, therefore, no 
free parameters in the final result. We shall see, how
ever, that some arbitrariness arises in making the transi
tion across the strip boundary, i.e., from the low-energy 
resonance region to the high-energy domain where 
multiple production dominates. Our approach does not 
seem adequate to describe this transition correctly. 
Fortunately, we can fall back for assistance on the 
principle of maximum strength [the requirement that 
for the Pomeranchuk trajectory a (0) = 1]. This principle 
presumably constitutes redundant information in a 
bootstrap calculation, where the existence of one or more 
particles is assumed at the beginning, but it is available 
to resolve ambiguities associated with inadequate ap
proximation procedures. 

III. A MODIFIED S I T OF N/D EQUATIONS 

On the basis of the asymptotic behavior of A (s,t,u) 
indicated in Fig. 1 one easily deduces that 

Ai(s) oc ^n 'm(o)-Vlm. (III.1) 
*-H-co 

The limit as s —» — <x> is more complicated and is con
sidered elsewhere; here we merely remark that if au(t) 
or alll(u) exceed unity over any interval the behavior 
a s s __* _ oo is sufficiently pathological as to preclude 
calculational procedures where one explicitly integrates 
to infinity on the left. The behavior on the right is better 
than that on the left because of the Froissart limit 
a (x) ^ 1, x ̂  0. We now develop N/D integral equations 
restricted to the physical (right-hand) cut. As usual, we 

20 P. Burke and C. Tate, in Proceedings of the Eleventh High-
Energy Conference, Geneva, July, 1962 (CERN, Geneva, 1962). 

consider the function 

£,(*) = fl.-«i4|(j) oc s«ll'lllW-l/sl\ns. (III.2) 
a-H-oo 

Let us denote the total contribution to Bt(s) from all 
the high-level Regge poles in channels II and III by 
Bip(s), where from Bip(s) we have removed the cut in 
s over the strip region 0<s<$i, si being the point above 
which Bi(s) is dominated by Bip(s). A procedure for 
removing the cut is shown in the next section; it does 
not alter the asymptotic behavior of Bip(s) nor does it 
appreciably alter the discontinuity of Bip(s) across the 
unphysical (left-hand) cuts. The reason is that these 
unphysical discontinuities are dominated by the par
ticles (i.e. the poles in t and u) of the crossed channels 
and these poles are not affected when the 5 cut is pushed 
out a finite distance. The alteration mainly chops out 
spurious nonresonant high-/ components in channels II 
and III. 

Now, since Bip(s) is real for 0<s<si and since the 
discontinuity of Bi(s) across the unphysical cuts as well 
as across the physical cut for s>si is approximately 
equal to that of Bip(s),21 we may write as the basic equa
tion of the (new) strip approximation 

1 r81 ImBt(s') 
Bl(s) = Bl

p(s)+- dsf , (III.3) 
7T J 80 S' — S 

if So is the physical threshold, and note that the correct 
asymptotic behavior (III.2), or, more precisely 

Bl(s)~^Bl
p(s), (III.4) 

8—»0O 

is immediately guaranteed for /<a I I , n i (0) . Since the 
N/D equations to be developed on the basis of (III.3) 
can be analytically continued in I we hope that the 
asymptotic behavior continues to be correct for larger I. 
In any event, the self-consistency problem only involves 
the lower I range, as shown in Sec. IV. 

In our modified N/D approach we cause Ni(s) to 
carry all the singularities of Bip(s), that is, the physical 
cut from Si to oo as well as the unphysical cuts. Our new 
Di(s) has a discontinuity only between sQ and Si and is 
normalized to unity at infinite s. Thus, writing 

5i(5) = #,(*)//>,(*), (IH.5) 
we have 

1 r81 lmDi(sf) 
Dl(s) = l+- ds' . (III.6) 

TT J SQ S' — S 

Ins t ead of expressing Ni(s) as an integral over i ts cuts , 
we write22 

21 Remember that the poles in t and u are completely contained 
in the terms from which Bip(s) has been projected. 

22 A similar equation has been derived by J. L. Uretsky, Phys. 
Rev. 123, 1459 (1961). The author first learned of this type of 
equation from S. Mandelstam (private communication, 1959). 
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iV,(j)=J,'(j)Z>,(*) 

1 /•« , lm{Bl''(s')Dl(s')} 1 / • " 
— / <fr'-

X J , 0 

, (ni.7) 

an expression with the required discontinuities and ap
proaching Bip(s) at infinity, at least for I < a n » m ( 0 ) . 
Since, by construction, Bip(s) is real in the interval 
between sQ and $i we may rewrite (III.7), with the aid 
of (III.6), as 

Nl(s) = Bl
p(s) 

1 r*i 
— / dsf 

TT J SQ 

Bl
p{s')-Bl

p{s) 
ImDiis'). (III.8) 

The final step is to use the unitarity condition in order 
to obtain an expression for ImDi(s) in the interval s0 to 
Si. Our system of equations becomes closed if we employ 
the two-body relation 

or 

ImBl(s) = Bl*(s)Pl(s)Bl(s) (III.9) 

ImDl(s) = -pt(s)Ni(s), (IIL10) 

where pi(s) is the usual phase-space factor, but one must 
ask if this equation is adequate for the entire interval. 
In other words, is there important production of many-
body systems before one reaches the asymptotic region? 
As stated above we believe that if all two-body channels 
are included—with metastable as well as stable particles 
—then residual multiparticle production should be 
small for s<Si. Now for an arbitrary finite number of 
stable two-body channels the matrix generalization of 
the above equations is straightforward,23 and recent 
work indicates that unstable particles can be brought 
into the same framework.18 We are, therefore, optimistic 
about the reliability of an eventual closed system of 
two-body equations. We are not so sanguine about the 
quantitative adequacy of a one-channel approximation,24 

but because of its simplicity such an approximation 
deserves first consideration. 

Substituting (III. 10) into (III.8) we obtain our final 
equation 

Nl(s) = Bl
p(s) 

1 /••! Bl
p(s,)-Bl

p(s) 1 r*i J 

+ - / ds'-
T J sn 

- P I ( * ' ) W ) , (in.li) 

a linear integral equation uniquely determining Ni(s) 
in terms of Bip(s) if the latter is finite throughout the 
interval s o ^ s ^ i - Actually, as a result of the cut dis
placement, the function Bip(s) may be logarithmically 

23 J. D. Bjorken, Phys. Rev. Letters 4, 473 (1960); S. Mandel-
stam (private communication, 1959). 

24 F. Zachariasen and C. Zemach, Phys. Rev. 128, 849 (1962), 
have shown, for example, that the TTW as well as the tnr channel is 
important in discussing the properties of the p. 

infinite at the uppr limit s=Si: 

Bip(s) —> - ( 1 / T ) TmBfist) \n(si-s). (111.12) 

Equation (III . 11) is therefore singular if ImBip(si)^0, 
but only marginally so, and can be shown to possess a 
unique solution as long as 

O ^ p j ^ O I m B i ^ O ^ l . (111.13) 

This latter condition is not an explicit consequence of 
our equations but follows from the general unitarity 
limitation on partial wave amplitudes if one remembers 
that, in our strip approximation, ImBi(s) — ImBip(s) 
for s>Si. If (III.13) is not satisfied our N/D equations 
have no solution, as can be seen from (III.3) where the 
left-hand side is bounded by elastic unitarity as s—*Si 
from below. Consequently, the logarithmically infinite 
parts of the two terms on the right of (III.3) must can
cel, and this can only happen if (III. 13) is satisfied since 
ImBi{s) is similarly bounded (by elastic unitarity) as 
s —> Si from below. 

I t is not difficult to show that as s—> si both Ni(s) 
and Di(s) behave 

where 
5i(ji) = sin-1[>i(j1) ImBfisdjn, 

and, correspondingly, that ImBi(s) is continuous across 
the boundary at s = Si. The singularity in our equation, 
therefore, plays two physically useful roles: First, it 
requires unitarity in the inelastic region, at least in the 
form (III. 13). Second, it leads to a smooth connection 
between the two-body and the multiple production 
regions so far as cross sections are concerned. 

In a forthcoming paper, (III . 11) will be transformed 
into a nonsingular (Fredholm) equation; it then follows 
that in the complex / domain where Bip(s) is holo-
morphic the functions Ni(s) and Di(s) are analytic 
(except for possible fixed poles in / that cancel in N/D) 
and Bi{s) correspondingly meromorphic with Regge 
poles at the zeros of Dt(s). Therefore, it is now necessary 
to consider the construction of the function Bip{s)P 

IV. CONSTRUCTION OF Bip(s) AS AN ANALYTIC 
FUNCTION OF I 

At this point the discussion is to be specialized to the 
7T7r amplitude but the general nature of the main points 
is evident. Suppose that for isotopic spin / in the / 
channel there is a single trajectory ai(t) extending into 
the right-half J plane. If the residue of this pole in 
Bt

T(t) is 7 / (0 then the usual Sommerfeld-Watson trans
form8 leads to a contribution to Ai(t,s) from this pole 

26 It is in the construction of Bip(s) that the major practical 
difference arises between the scheme proposed here and that of 
D. Wong in reference 5. The ideas underlying the two schemes are 
closely related, 

in.li
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equal to 

- ^ [ 2 a J ( 0 + l ] 7 / ( 0 ? « 2 a , ( , ) 

P a / ( 0 ( - l - s / 2 ? (
2 ) + ( - l ) ' P a / ( ( ) ( l + V 2 ? (

2 ) 
X-

2 siiMrarO) 
( iv . i ) 

The s cut in this formula begins at 5 = 0 , however, and 
recently Khuri and, independently, Jones have pointed 
out that the cut may be displaced by using in place of 
the Legendre function, 

<Ra(*,*l) = dx-
x« 

R e a < 0 , 
(1-2ZX+X2)1'2 

simra -
Jo 

dx-
(l-lzx+x*)1'2 

R e a > - 1 , (IV.2) 

the two forms being analytic continuations of one 
another.26 The function 

X / / ( ^ ) = 7 i ( 0 « ^ t / ( l ) [ 2 « j ( 0 + l ] 
X(Rai(l+s/2q?, l+Si/2qf) (IV.3) 

can then easily be shown to satisfy a Mandelstam repre
sentation, with a real double-spectral function that is 
nonzero in two regions26: (a) s>Si, q?>0 and (b) s>siy 

4qt
2< — sx. Provided Reai(t) < 0 throughout the latter 

region, as is guaranteed by our basic assumptions, we 
may subtract out the contribution of this spurious 
piece of double spectral function, thereby achieving 
an analytic function Ri(t,s), real for s <sh qt

2 <0, and 
with the same asymptotic properties as R/(t,s). This 
new function still has poles in t when and only when 
ai{i) passes through positive integers (or zero) and 
has no poles in s. All poles on or near the physical sheet 
are included with the correct residues, therefore, when 
terms of the form of Ri for each high-ranking trajectory 
are superposed. There are no spurious poles. The cor
rect asymptotic behavior within the strip also is en
sured. On this basis, therefore, we use in place of (IV.I), 

Aip{t,s)« J [ « r ( ^ ) + ( - 1 ) % ( / , I * ) ] (IV.4) 

as the contribution from an individual pole in the t 
channel. 

We perform the projection needed for Bip{s) in a 
slightly unconventional manner so as to stay within the 
region of reality. Normally, the continuation in angular 
momentum is made by the Froissart-Gribov formula27 

in terms of the absorptive parts in the t and u channels. 
Wong, however, has pointed out the equivalent 

26 N. Khuri, Institute for Advanced Study, 1962 (unpublished); 
E. Jones (private communication, Berkeley, 1962); see also, G. F. 
Chew, University of Cambridge, 1963 (unpublished). 

27 M. Froissart, Report to the La Jolla Conference on Theoretical 
Physics, June, 1961 (unpublished); V. N. Gribov, J. Exptl. 
Theoret. Phys (U.S.S.R.) 41, 667 and 1962 (1961), 

representation28 

1 r*1 

q*W*>(s,r) = - / 
2 J-i 

<fo P i («M «*>(*,«) 

sinx/ 
f dzQ,(-z)A<*>M, (IV.5) 

J —oo 

where A(±) (s,z) is the pair of functions constructed to 
have only a right cut in the z plane (with qs

2 positive) 
and whose even and odd parts in s, respectively, coin
cide with the even and odd parts of A (s,z).n Because of 
the Bose statistics in the TTTT amplitude we may suppress 
the (db) superscript and the required projection of 
(IV.4) simply acquires a factor 2 altogether with the 
crossing matrix 

1 
Bip(s,l) = j:f3rr-

<1* 21+2 

xf- f dtp/l+ W P M 
l2./_4g.2 \ 2q8y 

irnrl r 

IT J-o 

sinwl rAq'1 

dtQl{-\-t/2q*)Ar
p{t,s) 

Here 

Pi 

1 
3 
1 
3 
1 
3 

1 
1 
2 
1 
2 

5 
3 

-1 I 
6 

(IV.6) 

(IV.7) 

The domain of holomorphy in / of Btp{syl) is evidently 
determined by the behavior of Arp(t,s) at large (nega
tive) L If all the ar it) approach finite limits at oo we may 
read off this behavior from (IV.4) and (IV.3) as 

Arp(t,s) oc ^'(°°>ln/7j,(0X (function of s). (IV.8) 

The reduced residue yi(t) for the leading trajectory 
approaches a constant as t—»QO in potential scattering. 
If such is true in general, we see that Bip(s,l) is holo-
morphic for 

Re/>maxaj(oo). 

Evidently, if all the ai(t) approach the same limit at 
infinity (perhaps — 1 , as suggested by the work of 
Gribov16) we have a self-consistent situation. There is no 
reason to expect such a degree of consistency in the 
strip approximation; outside the strips our equations 
unreliable. Nevertheless, if all aj(oo) are negative, as 
originally supposed, we have a chance of finding ap
proximately consistent solutions of our equations across 
the strips. 

Notice that as the equations are formulated one deals 
only with the trajectories ar(t) for / < 0 , which means 
that the self-consistency problem only involves real 

88 D. Wong (private communication, 1962). 
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Z^l. Hopefully, the parameter si can be determined 
by the maximum strength requirement aj^(^=0) = l 
and, as argued in the following section, the other tra
jectories automatically fall below the Pomeranchuk. 
Thus, we hope to satisfy the Froissart limit, even though 
unitarity at high energies is not explicitly invoked. It 
is not so hopeful that we can consistently satisfy the 
requirement of yi=${t) vanishing at that negative t 
where aj=a0=0. Could unitarity be explicitly enforced 
such a result would be guaranteed, but we must depend 
on some not yet understood mechanism to produce a 
zero in the numerator function ATj«o at the appropriate 
place. Nevertheless, this deficiency is not as disastrous 
as might appear at first sight because there is no prospect 
in any event of finding a mathematically self-consistent 
solution to our bootstrap problem. What will be done is 
to assume a set of cti{t) and yr(t) for t<0 and see how 
closely these reproduce themselves. The trial functions 
ai(t) and yi{t) can be characterized through effective 
range formulas by a finite number of adjustable param
eters over the range where a r>0 (see following section) 
and it will be possible to constrain the formula for 
71=0 W so that this function vanishes when a/=o(0 
vanishes, regardless of the choice of adjustable param
eters. It should be extremely interesting to see whether 
the 7^0 (/), emerging from the solution of our N/D 
equations, shows any tendency to vanish in the ap
propriate place. Such a vanishing could result from a 
short-range repulsive force together with a longer range 
attraction, the combination producing a zero in 
Ni^isJ). That a short-range repulsion systematically 
should accompany strongly attractive long-range forces 
has been argued previously,10 but even if our current 
strip equations contain manifestations of this repulsion 
there is no visible reason why the zero in Ni~o(s,l) must 
occur at precisely the correct point. Explicit satisfaction 
of unitarity in s and t channels simultaneously is pre
sumably required to achieve such a result. 

V. EFFECTIVE-RANGE FORMULAS FOR 
TRAJECTORIES AND RESIDUES 

In the region t<0 where a(t) and y(t) are real and 
free from singularities it should be possible to approxi
mate these functions by effective-range formulas of the 
type suggested by Balazs.29 With nonintersecting tra
jectories [simple zeros of D(t,l)~] the previous discussion 
allows us to start from the general forms 

r p«e) 
a(t) = ax+ df , (V.l) 

J to t-t 

7(0 = * + / dtf , (V.2) 

where ah ch pa(t), and p r (/) are real. Balazs has analyzed 
this type of function29 and shown that, to achieve a 

29 L. Balazs, Phys. Rev. 125, 2179 (1962). 

prescribed accuracy over a prescribed interval away 
from the cuts, one may determine on an a priori basis 
the number and the location of poles which replace the 
cuts. Often two poles lead to reasonable accuracy, but 
each situation must be individually analyzed. Here we 
want to represent our functions over the interval 
—Si<t<0, so the number of poles depends on the ratio 
si/to, which may be large. However, the discontinuities 
Pa,y(t) each start from threshold like (*-/<,)" ('0>+1/2> so 
the effective threshold is displaced upward to some 
reasonable fraction of Si in the interesting cases. It is 
plausible, then, to expect a two-pole representation of 
the cut generally to suffice. 

Our effective-range formulas with two poles would be 

a(t) = a1+a2/(k-t)+a^/(h-t), (V.3) 

T ( 0 = ' I W ( * » - 0 W ( ' S - 0 , (V.4) 

where t% and h are to be chosen by a Balazs type of 
analysis and lie in the range h<t^ h<S\. If a(t) has a 
zero for /<0 for a trajectory of even / signature (such 
as the Pomeranchuk trajectory) we determine one of 
the c parameters by the requirement that y{t) have a 
zero at the same point. It may be that a% should be 
fixed at —1 if further investigation shows this to be 
the asymptotic limit of all trajectories. For the Pomer
anchuk trajectory a second parameter in (V.3) may be 
fixed by the maximum strength requirement a(0) = l. 

A check on the adequacy of the forms (V.3) and (V.4) 
is provided by the actual solutions of our N/D equa
tions ; it will soon be evident whether more poles should 
be added. One also learns whether in our strip approxi
mation a(oo)= — 1 and whether the zeros of D(t,l) are, 
in fact, simple for the top-ranking trajectories, as we 
have assumed. 

VL PION-PION DYNAMICS 

We conclude with an optimistic forecast of how the 
calculations of the ww amplitude in the one-channel 
strip approximation may develop. Our prediction is 
based not only at a peek at nature but on many 
previous calculations,30 particularly those of Chew and 
Mandelstam,1 of Ball and Wong,31 of Zachariasen and 
Zemach,24 of Wong,5 and of Balazs.32 

A natural starting point would be to assume just the 
Pomeranchuk trajectory and look for an approximately 
self-consistent solution involving the 1=6 amplitude 
alone. We predict that no such solution will be found 
coming close to the maximum strength requirement 
aj»o(^=0) = l. The reason is the relatively small coef
ficient I coupling the 1=0 state to itself in the crossing 
matrix (IV.9), plus the even / signature of the Pomer
anchuk trajectory which makes its (real) contribution 

30 A great many TIT calculations, in addition to those listed, have 
been published but employ methods that are difficult to relate to 
the calculation proposed here. 

31 J. Ball and D. Wong, Phys. Rev. Letters 7, 390 (1961). 
82 L. Balazs, Phys. Rev. 128, 1939 (1962). 
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to (IV.4) small when aj«0 is near 1. (It is the imaginary 
part of AI^QP that is dominant at high energy.) The 
force, in question, is attractive and one might think 
that 7/«o(0 could become large enough to counter
balance the aforementioned effects, but we expect from 
past experience that the analytic continuation of uni-
tarity in the t channel, through the N/D equations, 
constrains the magnitude of yi^{t). 

One then looks for help from either 1=1 or 1=2 and 
a glance at the crossing matrix plus consideration of / 
signature shows the former to be the more promising. 
We, therefore, try adding an 1=1 trajectory, which 
according to (IV. 7) must lie below the Pomeranchuk 
trajectory because the attraction it feels from 1=1 
exchange is only half as strong. Now there is a chance 
for a fairly consistent solution (see the work of Balazs32), 
where Ai^\p delivers a strong attraction to 7=0, a 
weaker but still attractive force for 7= 1 and a repulsion 
for 1=2. The uniform attraction delivered to all three 
states by Ai^op is relatively weak as we have seen, so 
the net force acting in 1=2 is probably repulsive with 
the trajectory here staying in the left-half J plane. 

We hope that the results are not too sensitive to the 
precise value of Si and that, perhaps, this parameter can 
be fixed by requiring ajaa,0(^=0) = 1 (the results of Balazs 
support such a hope32). A difficult test of the theory is 
to look for second-rank trajectories. Current experi
mental indications are that at least one such reaches the 
right-half J plane for 1=0 but probably none for 7= 1. 
Since our force strength is at a maximum for 1=0 the 
situation is hopeful, but no previous calculations throw 
any light on this matter. 

In view of the one-channel approximation, we are 
not optimistic about the accuracy of predicted residues 
7i(/), although normalizing the Pomeranchuk tra
jectory at /=0 may lead to reasonable predictions of 
resonance energies.33 According to the estimates of 
Blankenbecler34 and of Zachariasen and Zemach,24 it is 
necessary to include at least the wu channel in addition 
to the ww if accurate resonance widths are to be achieved. 

33 Although the self-consistent problem is restricted to t<0} 
there is no difficulty in continuing our solutions to t>h in order to 
see if resonances are predicted and with what masses and widths. 

34 R. Blankenbecler, Phys. Rev. 125, 755 (1962). 

To emphasize the content of the particular enterprise 
under consideration we summarize some obvious points 
of contact with experiment: 

(1) The function aj„0(0 for —Si<^0 already has 
been roughly measured from high-energy pp elastic 
scattering.35 

(2) The residue 7/-o(/=0) is known accurately from 
total cross-section measurements.36 

(3) A prediction emerges from the calculation as to 
whether a 7=2 , 1=0 resonance is to be expected and 
with what mass and width. 

(4) The measured mass of the p tells us that 
Rear-i(<=30f»,r2)=l. 

(5) The residue 7i~i(/= 30wT
2) is known roughly from 

the width of the p. 
(6) The value of aj«i(^=0) is known roughly from the 

energy dependence of the w+p and w~~p total cross-sec
tion difference.37 

(7) The height of the secondary trajectory for 1=0 
is known at 2=0 to be ~0.5.38 

(8) It is indicated experimentally that no secondary 
trajectory for 1=1 and no trajectories at all for 1=2 
reach the right-half J plane. 

All these points and, no doubt, others to emerge from 
future experiments lie within the domain of our boot
strap calculation. All are supposed to be predicted, 
starting only from a knowledge of the pion mass and 
quantum numbers. Of course, as emphasized repeatedly 
in this paper, we do not expect accurate predictions 
until all the important two-body channels are included. 
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